Reduced graphene oxide wrapped core-shell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability.

نویسندگان

  • Jihyeon Kim
  • Ju Won Lim
  • Filipe Marques Mota
  • Ji-Eun Lee
  • Ramireddy Boppella
  • Keun Yong Lim
  • Kyungkon Kim
  • Won Kook Choi
  • Dong Ha Kim
چکیده

Transparent conductive electrodes (TCEs) are widely used in a wide range of optical-electronic devices. Recently, metal nanowires (NWs), e.g. Ag and Cu, have drawn attention as promising flexible materials for TCEs. Although the study of core-shell metal NWs, and the encapsulation/overcoating of the surface of single-metal NWs have separately been an object of focus in the literature, herein for the first time we simultaneously applied both strategies in the fabrication of highly stable Ag-Cu NW-based TCEs by the utilization of Ag nanoparticles covered with reduced graphene oxide (rGO). The incorporation of Ag nanoparticles by galvanic displacement reaction was shown to significantly increase the long term stability of the electrode. Upon comparison with a CuNW reference, our novel rGO/Cu-AgNW-based TCEs unveiled remarkable opto-electrical properties, with a 3-fold sheet resistance decrease (from 29.8 Ω sq-1 to 10.0 Ω sq-1) and an impressive FOM value (139.4). No detrimental effect was noticed in the relatively high transmittance value (T = 77.6% at 550 nm) characteristic of CuNWs. In addition, our rGO/Cu-AgNW-based TCEs exhibited outstanding thermal stability up to 20 days at 80 °C in air, as well as improved mechanical flexibility. The superior performance herein reported compared with both CuNWs and AgNWs, and with a current conventional ITO reference, is believed to highlight the great potential of these novel materials as promising alternatives in optical-electronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

Flexible transparent electrodes (FTEs) with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO) served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transpa...

متن کامل

Recent Development in ITO-free Flexible Polymer Solar Cells

Polymer solar cells have shown good prospect for development due to their advantages of low-cost, light-weight, solution processable fabrication, and mechanical flexibility. Their compatibility with the industrial roll-to-roll manufacturing process makes it superior to other kind of solar cells. Normally, indium tin oxide (ITO) is adopted as the transparent electrode in polymer solar cells, whi...

متن کامل

High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures.

Transparent electrodes that can remain electrically conductive and stable under large mechanical deformations are highly desirable for applications in flexible and wearable electronics. This paper describes a comprehensive study of the electrical, optical, and mechanical properties of hybrid nanostructures based on two-dimensional graphene and networks of one-dimensional metal nanowires, and th...

متن کامل

Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides.

Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW...

متن کامل

The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 45  شماره 

صفحات  -

تاریخ انتشار 2016